Effect of Cervical Transcutaneous Spinal Cord Stimulation on Sensorimotor Cortical Activity during Upper-Limb Movements in Healthy Individuals

Author:

McGeady CiaránORCID,Alam MonzurulORCID,Zheng Yong-PingORCID,Vučković AleksandraORCID

Abstract

Transcutaneous spinal cord stimulation (tSCS) can improve upper-limb motor function after spinal cord injury. A number of studies have attempted to deduce the corticospinal mechanisms which are modulated following tSCS, with many relying on transcranial magnetic stimulation to provide measures of corticospinal excitability. Other metrics, such as cortical oscillations, may provide an alternative and complementary perspective on the physiological effect of tSCS. Hence, the present study recorded EEG from 30 healthy volunteers to investigate if and how cortical oscillatory dynamics are altered by 10 min of continuous cervical tSCS. Participants performed repetitive upper-limb movements and resting-state tasks while tSCS was delivered to the posterior side of the neck as EEG was recorded simultaneously. The intensity of tSCS was tailored to each participant based on their maximum tolerance (mean: 50 ± 20 mA). A control session was conducted without tSCS. Changes to sensorimotor cortical activity during movement were quantified in terms of event-related (de)synchronisation (ERD/ERS). Our analysis revealed that, on a group level, there was no consistency in terms of the direction of ERD modulation during tSCS, nor was there a dose-effect between tSCS and ERD/ERS. Resting-state oscillatory power was compared before and after tSCS but no statistically significant difference was found in terms of alpha peak frequency or alpha power. However, participants who received the highest stimulation intensities had significantly weakened ERD/ERS (10% ERS) compared to when tSCS was not applied (25% ERD; p = 0.016), suggestive of cortical inhibition. Overall, our results demonstrated that a single 10 min session of tSCS delivered to the cervical region of the spine was not sufficient to induce consistent changes in sensorimotor cortical activity among the entire cohort. However, under high intensities there may be an inhibitory effect at the cortical level. Future work should investigate, with a larger sample size, the effect of session duration and tSCS intensity on cortical oscillations.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3