Abstract
Investigation of river water/groundwater interaction aims generally at: (i) localizing water migration pathways; and (ii) quantifying water and associated matter exchange between the two natural water resources. Related numerical models generally rely on model-specific parameters that represent the physical conditions of the catchment and suitable aqueous tracer data. A generally applicable approach for this purpose is based on the finite element model FINIFLUX that is using the radioactive noble gas radon-222 as naturally occurring tracer. During the study discussed in this paper, radon and physical stream data were used with the aim to localize and quantify groundwater discharge into a well-defined section of a small headwater stream. Besides site-specific results of two sampling campaigns, the outcomes of the study reveal: (i) the general difficulties of conducting river water/groundwater interaction studies in small and heterogeneous headwater catchments; and (ii) the particular challenge of defining well constrained site- and campaign-specific values for both the groundwater radon endmember and the radon degassing coefficient. It was revealed that determination of both parameters should be based on as many data sources as possible and include a critical assessment of the reasonability of the gathered and used datasets. The results of our study exposed potential limitations of the approach if executed in small and turbulent headwater streams. Hence, we want to emphasize that the project was not only executed as a case study at a distinct site but rather aimed at evaluating the applicability of the chosen approach for conducting river water/groundwater interaction studies in heterogeneous headwater catchments.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献