Investigating River Water/Groundwater Interaction along a Rivulet Section by 222Rn Mass Balancing

Author:

Schubert Michael,Knoeller Kay,Mueller Christin,Gilfedder BenjaminORCID

Abstract

Investigation of river water/groundwater interaction aims generally at: (i) localizing water migration pathways; and (ii) quantifying water and associated matter exchange between the two natural water resources. Related numerical models generally rely on model-specific parameters that represent the physical conditions of the catchment and suitable aqueous tracer data. A generally applicable approach for this purpose is based on the finite element model FINIFLUX that is using the radioactive noble gas radon-222 as naturally occurring tracer. During the study discussed in this paper, radon and physical stream data were used with the aim to localize and quantify groundwater discharge into a well-defined section of a small headwater stream. Besides site-specific results of two sampling campaigns, the outcomes of the study reveal: (i) the general difficulties of conducting river water/groundwater interaction studies in small and heterogeneous headwater catchments; and (ii) the particular challenge of defining well constrained site- and campaign-specific values for both the groundwater radon endmember and the radon degassing coefficient. It was revealed that determination of both parameters should be based on as many data sources as possible and include a critical assessment of the reasonability of the gathered and used datasets. The results of our study exposed potential limitations of the approach if executed in small and turbulent headwater streams. Hence, we want to emphasize that the project was not only executed as a case study at a distinct site but rather aimed at evaluating the applicability of the chosen approach for conducting river water/groundwater interaction studies in heterogeneous headwater catchments.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3