Submarine Groundwater Discharge (SGD) to Coastal Waters of Saipan (Commonwealth of the Northern Mariana Islands, USA): Implications for Nitrogen Sources, Transport and Ecological Effects

Author:

Knapp Melissa A.,Geeraert NaomiORCID,Kim KihoORCID,Knee Karen L.

Abstract

Seagrass meadows and coral reefs along the coast of Saipan, a US commonwealth in the Northern Pacific, have been declining since the 1940s, possibly due to nutrient loading. This study investigated whether submarine groundwater discharge (SGD) contributes to nutrient loading and supports primary production on Saipan’s coast. SGD can be an important source of freshwater, nutrients, and other pollutants to coastal waters, especially in oceanic islands without well-developed stream systems. Ra and Rn isotopes were used as natural tracers of SGD. Nitrate, phosphate, and ammonium concentrations, ancillary water quality parameters, δ15N and δ18O of dissolved nitrate, and δ15N of primary producer tissue were measured. Our results pointed to discharge of low-salinity groundwater containing elevated concentrations of sewage-derived N at specific locations along Saipan’s coast. High SGD areas had lower salinity and pH, higher dissolved inorganic nitrogen concentrations, and elevated primary producer δ15N, indicative of sewage nitrogen inputs. We estimated that SGD could support 730–6400 and 3000–15,000 mol C d−1 of primary production in Tanapag and Garapan Lagoons, respectively, or up to approximately 60% of primary production in Garapan Lagoon. Efforts to improve water quality, reduce nutrient loading, and preserve coastal ecosystems must account for groundwater, since our results demonstrate that it is an important pathway of nitrogen delivery.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3