Abstract
Aiming at a thorny issue, that conventional small target detection algorithm using local contrast method is not sensitive for residual background clutter, robustness of algorithms is not strong. A Gaussian fusion algorithm using multi-scale regional patch structure difference and Regional Brightness Level Measurement is proposed. Firstly, Regional Energy Cosine (REC) is constructed to measure the structural discrepancy among a small target with neighboring cells. At the same time, Regional Brightness Level Measurement (RBLM) is constructed utilizing the brightness difference characteristics between small target and background areas. Then, a brand new Gaussian fusion algorithm is proposed for the generated saliency map in multi-scale space to characterize the overall heterogeneity in original infrared small target and local neighborhood. Finally, a self-adapting separation algorithm is adopted with the objective to obtain a small target from background interference. This method is able to utmostly restrain background interference and enhance the target. Extensive qualitative and quantitative testing results display that the desired algorithm has remarkable performance in strengthening target region and restraining background interference compared with current algorithms.
Funder
Cross-Media Intelligent Technology Project of Beijing National Research Center
Shanghai Aerospace Science and Technology Innovation Fund
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献