Study on Mechanisms for Improving Quality and Whiteness of Phosphogypsum Based on Process Mineralogy Analysis

Author:

Dong Wanqiang1ORCID,Chi Ru’an12,Guo Wanxin1,Deng Xiangyi1,Chen Zhuo1,Chen Haodong3

Affiliation:

1. School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. Hubei Three Gorges Laboratory, Yichang 443007, China

3. School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Because of its low whiteness, complex composition, radioactivity and high impurity percentage, the usage of phosphogypsum (PG) resources is limited. A theoretical foundation for upgrading and bleaching PG can be obtained by researching the presence and status of impurities in the material and its symbiotic connection with gypsum. This paper makes use of an automatic mineral phase analyzer, optical microscope, XRF, XRD and SEM-EDS. After analyzing the chemical makeup of PG, phase composition and particle size composition, the distribution law and symbiotic interaction between impurities and gypsum in various particle sizes were discovered. Using a flotation test, the process mineralogy analysis results were confirmed. According to the XRF and XRD study results, the primary impurity elements in PG are Si, P and F. Si is more abundant in PG that is between +850 μm and −37.5 μm in size. The concentrations of gypsum and quartz in PG are 82.59% and 8.73%, respectively, according to the results of XRD and process mineralogy. The monomer dissociation degree of the gypsum mineral phase is as high as 90.47%. Gibbsite and pyrite are the primary causes of the low whiteness of PG and are clearly related to the quartz mineral phase. The coupling process of “flotation + pickling” produced purified PG with a purity of 95.35%, whiteness of 70.76% and SiO2 content of 2.73%. The quality met the first-class index standards of PG in GB/T23456-2018.

Funder

National Key Research and Development Program Foundation of China

Chief Scientist Project Foundation of Three Gorges Laboratory

Hubei Three Gorges Laboratory Open Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3