Reduction of an Ilmenite Concentrate by Using a Novel CO2/CH4 Thermal Plasma Torch

Author:

El Khalloufi Mohammed1ORCID,Soucy Gervais1ORCID,Lapointe Jonathan2,Paquet Mathieu2

Affiliation:

1. Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

2. Ressources Metchib Inc., 756 4e Rue, Chibougamau, QC G8P 1S5, Canada

Abstract

Plasma technology has emerged as a very helpful tool in a variety of sectors, notably metallurgy. Innovators and scientists are focused on the problem of finding a more ecologically friendly way of extracting titanium and iron metal from natural ilmenite concentrate for industrial applications. A direct current (DC) plasma torch operating at atmospheric pressure is used in this study to describe a decarbonization process for reducing an ilmenite concentrate. The plasma gases employed in this torch are CO2 and CH4. The molar ratio of the gases may be crucial for achieving a satisfactory reduction of the ilmenite concentrate. As a result, two molar ratios for CO2/CH4 have been chosen: 1:1 and 2:1. During torch operation, a thin layer of graphite is formed on the cathode to establish a protective barrier, prolonging the cathode’s life. The material was analyzed using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The output gases were analyzed using mass spectrometry (MS). In addition, a thermodynamic analysis was performed to predict the development of thermodynamically stable phases. An economic assessment (including capital expenditures (CAPEX) and operating expenditures (OPEX)) and a carbon balance were developed with the feasibility of the piloting in mind.

Funder

NSERC (Natural Sciences and Engineering Research Council of Canada) discovery

Metchib company-Quebec, Canada

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3