New Insights into the Role of Thiol Collectors in Malachite Flotation

Author:

Yang Congren1ORCID,Chen Siying1,Li Haodong2,Qin Wenqing1

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

2. Zijin Mining Group Co., Ltd., Xiamen 361000, China

Abstract

Malachite is one of the most important copper-bearing oxide minerals; however, it shows poor floatability prior to sulfidization under the thiol collector system. This study investigated the reasons for the low recovery of malachite flotation without sulfidization. The results of adsorption capacity and contact angle test indicated that the malachite surface could adsorb a sufficient amount of the collector, obviously increasing the hydrophobicity of the malachite surface under static conditions. By measuring the amount of inorganic carbon in the flotation solution, it was found that the amount of inorganic carbon in the solution increased significantly when the thiol collectors were added into pulp, which could be attributed to the induced dissolution of the malachite surface by thiol collectors. Solubility tests further demonstrated that the copper ions released from the natural dissolution of malachite proved difficult in regard to reactions with thiol collector to form precipitates; however, the thiol collector induced the dissolution of malachite surface, and so the hydrophobic complexes’ copper-collector could not firmly adsorb on the mineral surface. Fourier transform infrared (FTIR) analysis revealed that thiol collectors do not adsorb stably on malachite surfaces. This was considered to be a substantial reason for the poor performance of malachite flotation without sulfidization.

Funder

National Natural Science Foundation of China

Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources

Co-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources

Publisher

MDPI AG

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3