A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride

Author:

Yu Joo-Won1,Wang Jei-Pil1ORCID

Affiliation:

1. Department of Metallurgical Engineering, Pukyong National University, Busan 48513, Republic of Korea

Abstract

The chlorination mechanism of neodymium oxide for the production of anhydrous neodymium chloride was analyzed based on the reaction temperature and reaction ratio of ammonium chloride, considering the suppression of the generation of NdOCl, an intermediate product of the reaction process. The results were obtained by distinguishing the shape of the produced NdCl3 (powder and bulk) and the setup of the chlorination equipment, reflecting its sensitivity to moisture and oxygen. The powdered form of NdCl3 produced at 400 °C and under argon gas flow was identified as NdCl3·6(H2O), while the bulk form of NdCl3 produced by melting at 760 °C after a chlorination process consisted of anhydrous NdCl3 and NdCl3∙n(H2O). The powdered NdCl3 produced in an argon gas environment with a controlled level of oxygen (below 16.05 ppm) and moisture (below 0.01 ppm) content was identified as single-phase anhydrous NdCl3 and showed the highest chlorination conversion rate of 98.65%. The addition of overstoichiometric ratios of NH4Cl in the chlorination process decreased the total amount of impurities (N, H, and O) in the NdCl3 product and increased the conversion rate of NdCl3.

Funder

Hyundai Motor Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3