Electrical Resistivity and Phase Evolution of Fe–N Binary System at High Pressure and High Temperature

Author:

Wang Yunzhe1,Yang Fan1,Shen Chunhua2,Yang Jing3ORCID,Hu Xiaojun1ORCID,Fei Yingwei3

Affiliation:

1. School of Science, Wuhan University of Technology, Wuhan 430070, China

2. Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, China

3. Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

Abstract

Partitioning experiments and the chemistry of iron meteorites indicate that the light element nitrogen could be sequestered into the metallic core of rocky planets during core–mantle differentiation. The thermal conductivity and the mineralogy of the Fe–N system under core conditions could therefore influence the planetary cooling, core crystallization, and evolution of the intrinsic magnetic field of rocky planets. Limited experiments have been conducted to study the thermal properties and phase relations of Fe–N components under planetary core conditions, such as those found in the Moon, Mercury, and Ganymede. In this study, we report results from high-pressure experiments involving electrical resistivity measurements of Fe–N phases at a pressure of 5 GPa and temperatures up to 1400 K. Four Fe–N compositions, including Fe–10%N, Fe–6.4%N, Fe–2%N, and Fe–1%N (by weight percent), were prepared and subjected to recovery experiments at 5 GPa and 1273 K. These experiments show that Fe–10%N and Fe–6.4%N form a single hexagonal close-packed phase (ɛ-nitrides), while Fe–2%N and Fe–1%N exhibit a face-centered cubic structure (γ-Fe). In separate experiments, the resistivity data were collected during the cooling after compressing the starting materials to 5 GPa and heating to ~1400 K. The resistivity of all compositions, similar to the pure γ-Fe, exhibits weak temperature dependence. We found that N has a strong effect on the resistivity of metallic Fe under rocky planetary core conditions compared to other potential light elements such as Si. The temperature-dependence of the resistivity also revealed high-pressure phase transition points in the Fe–N system. A congruent reaction, ε ⇌ γ’, occurs at ~673 K in Fe–6.4%N, which is ~280 K lower than that at ambient pressure. Furthermore, the resistivity data provided constraints on the high-pressure phase boundary of the polymorphic transition, γ ⇌ α, and an eutectoid equilibrium of γ’ ⇌ α + ε. The data, along with the recently reported phase equilibrium experiments at high pressures, enable construction of a phase diagram of the Fe–N binary system at 5 GPa.

Funder

ational Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3