Sedimentological and Geochemical Characterization of the Early Cambrian Eastern Yunnan, Southwestern China

Author:

Peng Xiaoxia12,Fang Zexin2,Cheng Xin2,Guo Ling12ORCID,Liu Jianni2

Affiliation:

1. State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China

2. Department of Geology, Northwest University, Xi’an 710069, China

Abstract

The accurate reconstruction of the early Cambrian paleoclimate and paleoceanographic conditions on the Yangtze Plate is crucial for understanding the ancient environment during the Cambrian Explosion. It is also a key factor in understanding the ecological habits of organisms during the Cambrian Explosion. The study utilized field outcrops, thin section analysis, and major and trace elements to investigate the sedimentary environment, provenance, paleoweathering, and paleoclimate of the Lower Cambrian Hongjingshao (HJS) Formation (Cambrian Stage 3, ~515 Ma) in the Yangtze Basin, eastern Yunnan, SW China. The HJS sandstones are composed of 10 lithofacies, including massive and weakly bedded gravel supported by coarse sandstone (Gm), trough cross-bedded sandstone (St), planar cross-bedded sandstone (Sp), ripple cross-laminated sandstone (Sr), horizontal bedded sandstone (Sh), scour-fill sandstone (Se), massive sandstone (Sm), fine to medium sandstone with thin bed muddy siltstone (Fl), muddy siltstone (Fsc), and mudstone (Fm). On the basis of these lithofacies, channel fill and over-bank deposits in delta and shallow shelf depositional environments are suggested for HJS Formation. The major elements-based provenance discriminant function and mineral composition indicate that felsic rocks from the recycled orogen and continental block are the main sediment source terrane for the HJS sandstones of the study area. CIA, PIA, and CIW values range from 71.29 to 93.72, indicating an intermediate to intense chemical weathering and semiarid to humid climate conditions in Cambrian Stage 3. The research findings have clarified the paleoclimate and paleoceanographic environment of the Early Cambrian in the Yangtze region, which is of significant importance for understanding the early biological and ecological marine environment in the study area.

Funder

NSFC

MOST Special Fund

State Key Laboratory of Continental Dynamics, Northwest University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3