Experimental Investigation on Gallium and Germanium Migration in Coal Gangue Combustion

Author:

Wu Feitan1,Zhou Benjun1,Zhou Chuncai1

Affiliation:

1. School of Resources and Environmental Engineering, Hefei University of Technology, No. 193, Road Tunxi, Hefei 230009, China

Abstract

Gallium (Ga) and germanium (Ge) critical elements have a wide range of applications and market value. Extracting critical elements from coal gangue and combustion products can alleviate pressures on primary mining resources. Understanding the transformation behavior of Ga and Ge during coal gangue combustion processes is significant for resource utilization and environmental protection. Coal gangue from Xing’an League, Inner Mongolia, was chosen to explore how combustion temperatures (600 °C to 1000 °C) and particle sizes (50, 80, 10, 140, and 200 mesh) influence Ga and Ge migration during combustion. Techniques such as ICP-MS, XRD, XRF, SEM, TG-DSC, and sequential chemical extraction were employed to analyze the transformation of minerals and to quantify the contents and occurrence forms of Ga and Ge. Smaller gangue particle sizes were associated with higher concentrations of Ga and Ge. Approximately 99.19% of Ga and Ge in coal gangue were found in the residual, organic/sulfide-bound, and metal-oxide-bound modes. High temperatures promoted element volatilization and changed the reactions and interactions between elements and minerals. As combustion temperatures rose from 600 °C to 1000 °C, Ga and Ge contents in the products declined progressively. Under high temperatures, minerals like kaolinite, illite, and pyrite in gangue converted to silicate glass phases, mullite, and hematite. Minerals like kaolinite, calcite, and pyrite melted, leading to increased cohesion and agglomeration in the products. Over 90% of Ga and Ge in the combustion products existed in the residual, organic/sulfide-bound, and metal-oxide-bound forms. Moreover, Ga was enriched in combustion products, with its content exceeding critical extraction levels. The results may provide a useful reference for developing critical elements enrichment, extraction, and separation technologies from coal gangue.

Funder

Project of Linhuan Coking Industry Company

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3