Selective Separation of Rare Earth Ions from Mine Wastewater Using Synthetic Hematite Nanoparticles from Natural Pyrite

Author:

Zhao Chunxiao12,Wang Jun12,Yang Baojun12,Liu Yang12,Qiu Guanzhou12

Affiliation:

1. School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China

2. Key Lab of Biohydrometallurgy of Ministry of Education, Changsha 410083, China

Abstract

The separation of rare earth ions (RE3+) from aqueous solutions poses a significant challenge due to their similar chemical and physical characteristics. This study presents a method for synthesizing hematite nanoparticles (Fe2O3 NPs) through the high-temperature phase transition of natural pyrite for adsorbing RE3+ from mine wastewater. The characteristics of Fe2O3 NPs were studied using XRD, SEM, BET, XPS, FTIR, and Zeta potential. The optimal condition for RE3+ adsorption by Fe2O3 NPs was determined to be at pH 6.0 with an adsorption time of 60 min. The maximum adsorption capacities of Fe2O3 NPs for La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Dy3+, and Y3+ were 12.80, 14.02, 14.67, 15.52, 17.66, 19.16, 19.94, and 11.82 mg·g−1, respectively. The experimental data fitted well with the Langmuir isotherm and pseudo-second-order models, suggesting that the adsorption process was dominated by monolayer chemisorption. Thermodynamic analysis revealed the endothermic nature of the adsorption process. At room temperature, the adsorption of RE3+ in most cases (La3+, Ce3+, Pr3+, Nd3+, Sm3+, and Y3+) onto Fe2O3 NPs was non-spontaneous, except for the adsorption of Gd3+ and Dy3+, which was spontaneous. The higher separation selectivity of Fe2O3 NPs for Gd3+ and Dy3+ was confirmed by the separation factor. Moreover, Fe2O3 NPs exhibited excellent stability, with an RE3+ removal efficiency exceeding 94.70% after five adsorption–desorption cycles, demonstrating its potential for the recovery of RE3+ from mine wastewater.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Central South University Innovation-Driven Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3