Identifying Malware Packers through Multilayer Feature Engineering in Static Analysis

Author:

Alkhateeb Ehab1ORCID,Ghorbani Ali1ORCID,Habibi Lashkari Arash2ORCID

Affiliation:

1. Canadian Institute for Cybersecurity (CIC), Faculty of Computer Science, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

2. Behaviour-Centric Cybersecurity Center (BCCC), School of Information Technology, York University, Toronto, ON M3J 1P3, Canada

Abstract

This research addresses a critical need in the ongoing battle against malware, particularly in the form of obfuscated malware, which presents a formidable challenge in the realm of cybersecurity. Developing effective antivirus (AV) solutions capable of combating packed malware remains a crucial endeavor. Packed malicious programs employ encryption and advanced techniques to obfuscate their payloads, rendering them elusive to AV scanners and security analysts. The introduced research presents an innovative malware packer classifier specifically designed to adeptly identify packer families and detect unknown packers in real-world scenarios. To fortify packer identification performance, we have curated a meticulously crafted dataset comprising precisely packed samples, enabling comprehensive training and validation. Our approach employs a sophisticated feature engineering methodology, encompassing multiple layers of analysis to extract salient features used as input to the classifier. The proposed packer identifier demonstrates remarkable accuracy in distinguishing between known and unknown packers, while also ensuring operational efficiency. The results reveal an impressive accuracy rate of 99.60% in identifying known packers and 91% accuracy in detecting unknown packers. This novel research not only significantly advances the field of malware detection but also equips both cybersecurity practitioners and AV engines with a robust tool to effectively counter the persistent threat of packed malware.

Funder

National Science and Engineering Research Council of Canada

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3