Multi-Step Two-Dimensional Ultrasonic-Assisted Grinding of Silicon Carbide: An Experimental Study on Surface Topography and Roughness

Author:

Li Hongbo1,Chen Tao2,Bie Wenbo3,Chen Fan3,Suo Yuhao2,Duan Zhenyan2

Affiliation:

1. School of Intelligent Manufacturing and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China

2. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

3. School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China

Abstract

Two-dimensional ultrasonic-assisted grinding (2D-UAG) has exhibited advantages in improving the machining quality of hard and brittle materials. However, the grinding mechanism in this process has not been thoroughly revealed due to the complicated material removal behaviors. In this study, multi-step 2D-UAG experiments of silicon carbide are conducted to investigate the effects of machining parameters on surface quality. The experimental results demonstrate that the tool amplitude and the workpiece amplitude have similar effects on surface roughness. In the rough grinding stage, the surface roughness decreases continuously with increasing ultrasonic amplitudes and the material is mainly removed by brittle fracture with different surface defects. Under semi-finishing and finishing grinding steps, the surface roughness first declines and then increases as the tool amplitude or workpiece amplitude grows from 0 μm to 8 μm and the inflection point appears around 4 μm. The surface damage contains small-sized pits with band-like distribution and localized grooves. Furthermore, the influences of cutting parameters on surface quality are similar to those in conventional grinding. Discussions of the underlying mechanisms for the experimental phenomena are also provided based on kinematic analysis. The conclusions gained in this study can provide references for the optimization of machining parameters in 2D-UAG of hard and brittle materials.

Funder

the Special Project of Nanyang Normal University in China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3