Effects and Mechanism of Surface Water Wettability and Operating Frequency on Response Linearity of Flexible IDE Capacitive Humidity Sensor

Author:

Yang Woo Seok,Han SeungohORCID,Lim Gyu-Ri,Kim Hyun YouORCID,Hong Sung-Hoon

Abstract

Flexible capacitive humidity sensors are promising for low-cost, wearable, and radio frequency identification sensors, but their nonlinear response is an important issue for practical applications. Herein, the linearity of humidity response was controlled by surface water wettability and operating frequency of sensor, and the mechanism was explained in detail by surface water condensation. For a sensor with a Ag interdigitated electrode (IDE) on a poly(ethylene terephthalate) substrate, the capacitance showed a small linear increase with humidity up to 70% RH but a large nonlinear increase in the higher range. The response linearity was increased by a hydrophobic surface treatment of self-assembled monolayer coating while it was decreased by an ultraviolet/ozone irradiation for hydrophilicity. It was also increased by increasing the frequency in the range of 1–100 kHz, more prominently on a more hydrophilic surface. Based on experiment and simulation, the increase in sensor capacitance was greatly dependent on the geometric pattern (e.g., size, number, and contact angle) and electrical permittivity of surface water droplets. A larger and more nonlinear humidity response resulted from a larger increase in the number of droplets with a smaller contact angle on a sensor surface with higher water wettability and also from a higher permittivity of water at a lower frequency.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3