Building Trusted Federated Learning on Blockchain

Author:

Oktian Yustus EkoORCID,Stanley Brian,Lee Sang-GonORCID

Abstract

Federated learning enables multiple users to collaboratively train a global model using the users’ private data on users’ local machines. This way, users are not required to share their training data with other parties, maintaining user privacy; however, the vanilla federated learning proposal is mainly assumed to be run in a trusted environment, while the actual implementation of federated learning is expected to be performed in untrusted domains. This paper aims to use blockchain as a trusted federated learning platform to realize the missing “running on untrusted domain” requirement. First, we investigate vanilla federate learning issues such as client’s low motivation, client dropouts, model poisoning, model stealing, and unauthorized access. From those issues, we design building block solutions such as incentive mechanism, reputation system, peer-reviewed model, commitment hash, and model encryption. We then construct the full-fledged blockchain-based federated learning protocol, including client registration, training, aggregation, and reward distribution. Our evaluations show that the proposed solutions made federated learning more reliable. Moreover, the proposed system can motivate participants to be honest and perform best-effort training to obtain higher rewards while punishing malicious behaviors. Hence, running federated learning in an untrusted environment becomes possible.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. The EU General Data Protection Regulation (GDPR): European Regulation that has a Global Impact

2. Communication-efficient learning of deep networks from decentralized data;McMahan;Proceedings of the Artificial Intelligence and Statistics,2017

3. Bitcoin: A Peer-to-Peer Electronic Cash System;Nakamoto;Decentralized Bus. Rev.,2008

4. A Next-Generation Smart Contract and Decentralized Application Platform;Buterin;White Pap.,2014

5. Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3