Abstract
Brain asymmetry is associated with handedness and cognitive function, and is also reflected in the shape of endocasts. However, comprehensive quantification of the asymmetry in endocast shapes is limited. Here, we quantify and visualize the variation of endocast asymmetry in modern humans using diffeomorphic surface matching. Our results show that two types of lobar fluctuating asymmetry contribute most to global asymmetry variation. A dominant pattern of local directional asymmetry is shared in the majority of the population: (1) the left occipital pole protrudes more than the right frontal pole in the left-occipital and right-frontal petalial asymmetry; (2) the left Broca’s cap appears to be more globular and bulges laterally, anteriorly, and ventrally compared to the right side; and (3) the asymmetrical pattern of the parietal is complex and the posterior part of the right temporal lobes are more bulbous than the contralateral sides. This study confirms the validity of endocasts for obtaining valuable information on encephalic asymmetries and reveals a more complicated pattern of asymmetry of the cerebral lobes than previously reported. The endocast asymmetry pattern revealed here provides more shape information to explore the relationships between brain structure and function, to re-define the uniqueness of human brains related to other primates, and to trace the timing of the human asymmetry pattern within hominin lineages.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献