Author:
Xu Zhengyang,Liu Ruiqing,Wang Zhizhong,Wang Songwei,Zhu Juncai
Abstract
In this work, we propose a symmetry approach and design a convolutional neural network for mouse pose estimation under scale variation. The backbone adopts the UNet structure, uses the residual network to extract features, and adds the ASPP module into the appropriate residual units to expand the perceptual field, and uses the deep and shallow feature fusion to fuse and process the features at multiple scales to capture the various spatial relationships related to body parts to improve the recognition accuracy of the model. Finally, a set of prediction results based on heat map and coordinate offset is generated. We used our own built mouse dataset and obtained state-of-the-art results on the dataset.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献