Eady Baroclinic Instability of a Circular Vortex

Author:

Vic ArmandORCID,Carton XavierORCID,Gula JonathanORCID

Abstract

The stability of two superposed buoyancy vortices is studied linearly in a two-level Surface Quasi-Geostrophic (SQG) model. The basic flow is chosen as two circular vortices with uniform buoyancy, coaxial, and the same radius. A perturbation with a single angular mode is added to this mean flow. The SQG equations linearized in perturbation around this basic flow form a two-dimensional ODE for which the normal and singular mode solutions are numerically computed. The instability of these two vortices depends on several parameters. The parameters varied here are: the vertical distance between the two levels and the two values of the vortex buoyancies (called vortex intensity hereafter); the other parameters remain fixed. For normal modes, the system is stable if the levels are sufficiently far from each other vertically, to prevent vertical interactions of the buoyancy patches. Stability is also reached if the layers are close to each other, but if the vortices have very different intensities, again preventing the resonance of Rossby waves around their contours. The system is unstable if the vortex intensities are similar and if the two levels are close to each other. The growth rates of the normal modes increase with the angular wave-number, also corresponding to shorter vertical distances. The growth rates of the singular modes depend more on the distance between the levels than on the ratio of the vortex intensities, at a short time; as expected, they converge towards the growth rates of the normal modes. This study remaining linear does not predict the final evolution of such unstable vortices. This nonlinear evolution will be studied in a sequel of this work.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The nonlinear evolution of two surface quasi-geostrophic vortices;Geophysical & Astrophysical Fluid Dynamics;2024-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3