Collision Forgery Attack on the AES-OTR Algorithm under Quantum Computing

Author:

Chang Lipeng,Wei Yuechuan,Wang Xiangru,Pan Xiaozhong

Abstract

In recent years, some general cryptographic technologies have been widely used in network platforms related to the national economy and people’s livelihood, effectively curbing network security risks and maintaining the orderly operation and normal order of society. However, due to the fast development and considerable benefits of quantum computing, the classical cryptosystem faces serious security threats, so it is crucial to analyze and assess the anti-quantum computing ability of cryptographic algorithms under the quantum security model, to enhance or perfect the design defects of related algorithms. However, the current design and research of anti-quantum cryptography primarily focus on the cryptographic structure or working mode under the quantum security model, and there is a lack of quantum security analysis on instantiated cryptographic algorithms. This paper investigates the security of AES-OTR, one of the third-round algorithms in the CAESAR competition, under the Q2 model. The periodic functions of the associated data were constructed by forging the associated data according to the parallel and serial structure characteristics of the AES-OTR algorithm in processing the associated data, and the periodic functions of the associated data were constructed multiple times based on the Simon quantum algorithm. By using the collision pair, two collision forgery attacks on the AES-OTR algorithm can be successfully implemented, and the period s is obtained by solving with a probability close to 1. The attacks in this paper caused a significant threat to the security of the AES-OTR algorithm.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference33 articles.

1. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines

2. Quantum security of NMAC and related constructions;Song;Proceedings of the Annual International Cryptology Conference,2017

3. Quantum indistinguishability of random sponges;Czajkowski;Proceedings of the Annual International Cryptology Conference,2019

4. 4-round Luby-Rackoff construction is a qPRP;Hosoyamada;Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security,2019

5. Quantum cryptanalysis on some generalized unbalanced Feistel networks;Yu;J. Cryptol. Res.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3