Impact of Buoyancy and Stagnation-Point Flow of Water Conveying Ag-MgO Hybrid Nanoparticles in a Vertical Contracting/Expanding Riga Wedge

Author:

Khan UmairORCID,Zaib Aurang,Ishak AnuarORCID,Waini Iskandar,Madhukesh Javali K.ORCID,Raizah ZehbaORCID,Galal Ahmed M.ORCID

Abstract

Riga surface can be utilized to reduce the pressure drag and the friction of the submarine by stopping the separation of the boundary layer as well as by moderating turbulence production. Therefore, the current symmetry of the work investigates the slip impacts on mixed convection flow containing water-based hybrid Ag-MgO nanoparticles over a vertical expanding/contracting Riga wedge. In this analysis, a flat surface, wedge, and stagnation point are also discussed. A Riga surface is an actuator that contains electromagnetic where a span-wise array associated with the permanent magnets and irregular electrodes accumulated on a smooth surface. A Lorentz force is incorporated parallel to the surface produced by this array which eases exponentially normal to the surface. Based on the considered flow symmetry, the physical scenario is initially modeled in the appearance of partial differential equations which are then rehabilitated into a system of ordinary differential equations by utilizing the pertinent similarity variables. A bvp4c solver is engaged to acquire the numerical solution. The flow symmetry and the influences of pertaining parameters involved in the problem are investigated and are enclosed in graphical form. The findings confirm that the velocity reduces, and temperature enhances due to nanoparticle volume fraction. A modified Hartmann number increases the velocity and diminishes the temperature. Moreover, the suction parameter enhances the velocity profiles and reduces the dimensionless temperature profiles. The heat transfer gradually increases by diminishing the contracting parameter and increasing the expanding parameter.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress 231/MD 66;Choi;Proceedings of the 1995 International Mechanical Engineering Congress and Exhibition,1995

2. Boundary-Layer Heat Transfer from a Stretching Circular Cylinder in a Nanofluid

3. Conducted similar research for a study of heat transfer and flow of nanofluid in permeable channel in the presence of magnetic field;Fakour;Prop. Power Res.,2015

4. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition

5. Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3