Closed-Form Derivations of Infinite Sums and Products Involving Trigonometric Functions

Author:

Reynolds RobertORCID,Stauffer AllanORCID

Abstract

We derive a closed-form expression for the infinite sum of the Hurwitz–Lerch zeta function using contour integration. This expression is used to evaluate infinite sum and infinite product formulae involving trigonometric functions expressed in terms of fundamental constants. These types of infinite sums and products have previously been and are currently studied by many mathematicians including Leonhard Euler. The results presented in this paper extend previous work by squaring parameters in the infinite sum of the Hurwitz–Lerch zeta function. This formula allows for new derivations featuring trigonometric functions with angles of powers of 2. The zero distribution of almost all Hurwitz–Lerch zeta functions is asymmetrical. A table of infinite products is produced highlighting the usefulness of this work and for easy reading by researchers interested in such formulae. Mathematica software was used in assisting with the numerical verification of the results in the tables produced.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3