Identification of Novel Drugs Targeting Cell Cycle Regulators for the Treatment of High-Grade Serous Ovarian Cancer via Integrated Bioinformatics Analysis

Author:

Zhao Yuanchun,Zuo Jiachen,Shen YimingORCID,Yan Donghui,Chen Jiajia,Qi Xin

Abstract

High-grade serous ovarian carcinoma (HGSC), the most common and aggressive histological type of ovarian cancer, remains the leading cause of cancer-related deaths among females. It is important to develop novel drugs to improve the therapeutic outcomes of HGSC patients, thereby reducing their mortality. Symmetry is one of the most important properties of the biological network, which determines the stability of a biological system. As aberrant gene expression is a critical symmetry-breaking event that perturbs the stability of biological networks and triggers tumor progression, we aim in this study to discover new candidate drugs and predict their targets for HGSC therapy based on differentially expressed genes involved in HGSC pathogenesis. Firstly, 98 up-regulated genes and 108 down-regulated genes were identified from three independent transcriptome datasets. Then, the small-molecule compounds PHA-793887, pidorubicine and lestaurtinib, which target cell-cycle-related processes, were identified as novel candidate drugs for HGSC treatment by adopting the connectivity map (CMap)-based drug repositioning approach. Furthermore, through a topological analysis of the protein–protein interaction network, cell cycle regulators CDK1, TOP2A and AURKA were identified as bottleneck nodes, and their expression patterns were validated at the mRNA and protein expression levels. Moreover, the results of molecular docking analysis showed that PHA-793887, pidorubicine and lestaurtinib had a strong binding affinity for CDK1, TOP2A and AURKA, respectively. Therefore, our study repositioned PHA-793887, pidorubicine and lestaurtinib, which can inhibit cell cycle regulators, as novel agents for HGSC treatment, thereby helping to optimize the therapeutic strategy for HGSC.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3