Abstract
The high-order harmonic generation (HHG) in ZnO is investigated by numerically solving semiconductor Bloch equations (SBEs), which can be explained well by a four-step model. In this model, preacceleration is the first step, in which the electron is accelerated in the valence band until it reaches the point of the minimum band gap. To prove the existence of the preacceleration process, SBE-based k-resolved harmonic spectra and the transient conduction-band population are presented. The results show that the contribution of crystal-momentum channels away from the minimum band gap via preacceleration is non-negligible. Furthermore, the X-shaped distribution in the k-resolved spectra can be described well by the preacceleration process. Based on the above analysis, we can conclude that the preacceleration process plays an important role in HHG.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献