Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media

Author:

Alqhtani Manal,Saad Khaled M.ORCID,Shah RasoolORCID,Weera WajareeORCID,Hamanah Waleed M.ORCID

Abstract

This paper investigates the fractional local Poisson equation using the homotopy perturbation transformation method. The Poisson equation discusses the potential area due to a provided charge with the possibility of area identified, and one can then determine the electrostatic or gravitational area in the fractal domain. Elliptic partial differential equations are frequently used in the modeling of electromagnetic mechanisms. The Poisson equation is investigated in this work in the context of a fractional local derivative. To deal with the fractional local Poisson equation, some illustrative problems are discussed. The solution shows the well-organized and straightforward nature of the homotopy perturbation transformation method to handle partial differential equations having fractional derivatives in the presence of a fractional local derivative. The solutions obtained by the defined methods reveal that the proposed system is simple to apply, and the computational cost is very reliable. The result of the fractional local Poisson equation yields attractive outcomes, and the Poisson equation with a fractional local derivative yields improved physical consequences.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference56 articles.

1. Partial differential equations;Evants,1998

2. Finite and First Iterative Solvers: With Applications in Incompressible Fluid Dynamics;Elman,2005

3. Fractional Poission equations and ergodic theorems for factional coboundaries, Israel;Derriennic;J. Math.,2001

4. Introduction to Electrodynamics;Griffiths,1999

5. On the poisson equation with intersecting interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3