ResNet1D-Based Personal Identification with Multi-Session Surface Electromyography for Electronic Health Record Integration

Author:

Ganiga Raghavendra1ORCID,S. N. Muralikrishna2ORCID,Choi Wooyeol3ORCID,Pan Sungbum4ORCID

Affiliation:

1. Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India

2. Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India

3. Department of Computer Engineering, Chosun University, Gwangju 61452, Republic of Korea

4. IT Research Institute, Chosun University, 309 Pilmun-daero, Gwangju 61452, Republic of Korea

Abstract

Personal identification is an important aspect of managing electronic health records (EHRs), ensuring secure access to patient information, and maintaining patient privacy. Traditionally, biometric, signature, username/password, photo identity, etc., are employed for user authentication. However, these methods can be prone to security breaches, identity theft, and user inconvenience. The security of personal information is of paramount importance, particularly in the context of EHR. To address this, our study leverages ResNet1D, a deep learning architecture, to analyze surface electromyography (sEMG) signals for robust identification purposes. The proposed ResNet1D-based personal identification approach using the sEMG signal can offer an alternative and potentially more secure method for personal identification in EHR systems. We collected a multi-session sEMG signal database from individuals, focusing on hand gestures. The ResNet1D model was trained using this database to learn discriminative features for both gesture and personal identification tasks. For personal identification, the model validated an individual’s identity by comparing captured features with their own stored templates in the healthcare EHR system, allowing secure access to sensitive medical information. Data were obtained in two channels when each of the 200 subjects performed 12 motions. There were three sessions, and each motion was repeated 10 times with time intervals of a day or longer between each session. Experiments were conducted on a dataset of 20 randomly sampled subjects out of 200 subjects in the database, achieving exceptional identification accuracy. The experiment was conducted separately for 5, 10, 15, and 20 subjects using the ResNet1D model of a deep neural network, achieving accuracy rates of 97%, 96%, 87%, and 82%, respectively. The proposed model can be integrated with healthcare EHR systems to enable secure and reliable personal identification and the safeguarding of patient information.

Funder

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3