A Novel Multi-Objective Binary Chimp Optimization Algorithm for Optimal Feature Selection: Application of Deep-Learning-Based Approaches for SAR Image Classification

Author:

Sadeghi Fatemeh,Larijani Ata,Rostami Omid,Martín DiegoORCID,Hajirahimi Parisa

Abstract

Removing redundant features and improving classifier performance necessitates the use of meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems. With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR) representation models have been suggested, most of which are based on deep convolutional neural networks (DCNNs). In this paper, we propose a hybrid approach of a new multi-objective binary chimp optimization algorithm (MOBChOA) and DCNN for optimal feature selection. We implemented the proposed method to classify POLSAR images from San Francisco, USA. To do so, we first performed the necessary preprocessing, including speckle reduction, radiometric calibration, and feature extraction. After that, we implemented the proposed MOBChOA for optimal feature selection. Finally, we trained the fully connected DCNN to classify the pixels into specific land-cover labels. We evaluated the performance of the proposed MOBChOA-DCNN in comparison with nine competitive methods. Our experimental results with the POLSAR image datasets show that the proposed architecture had a great performance for different important optimization parameters. The proposed MOBChOA-DCNN provided fewer features (27) and the highest overall accuracy. The overall accuracy values of MOBChOA-DCNN on the training and validation datasets were 96.89% and 96.13%, respectively, which were the best results. The overall accuracy of SVM was 89.30%, which was the worst result. The results of the proposed MOBChOA on two real-world benchmark problems were also better than the results with the other methods. Furthermore, it was shown that the MOBChOA-DCNN performed better than methods from previous studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3