Author:
Lee Chun-Yao,Wen Meng-Syun
Abstract
This paper proposes a feature selection (FS) approach, namely, correlation and fitness value-based feature selection (CFFS). CFFS is an improvement feature selection approach of correlation-based feature selection (CFS) for the common failure cases of the induction motor. CFFS establishes the induction motor fault detection (FD) system with artificial neural network (ANN). This study analyzes the current signal of the induction motor with multiresolution analysis (MRA), extracts the features, and uses feature selection approaches (ReliefF, CFS, and CFFS) to reduce the number of features and maintain the accuracy of the induction motor fault detection system. Finally, the induction motor fault detection system is trained by the feature selection approaches selected features. The best induction motor fault detection system will be established through the comparison of the efficiency of these FS approaches.
Funder
Ministry of Science and Technology, Taiwan
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献