Tapping into Permutation Symmetry for Improved Detection of k-Symmetric Extensions

Author:

Li Youning1ORCID,Zhang Chao2ORCID,Hou Shi-Yao3,Wu Zipeng2ORCID,Zhu Xuanran2,Zeng Bei2

Affiliation:

1. College of Science, China Agricultural University, Beijing 100080, China

2. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

3. College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China

Abstract

Symmetric extensions are essential in quantum mechanics, providing a lens through which to investigate the correlations of entangled quantum systems and to address challenges like the quantum marginal problem. Though semi-definite programming (SDP) is a recognized method for handling symmetric extensions, it struggles with computational constraints, especially due to the large real parameters in generalized qudit systems. In this study, we introduce an approach that adeptly leverages permutation symmetry. By fine-tuning the SDP problem for detecting k-symmetric extensions, our method markedly diminishes the searching space dimensionality and trims the number of parameters essential for positive-definiteness tests. This leads to an algorithmic enhancement, reducing the complexity from O(d2k) to O(kd2) in the qudit k-symmetric extension scenario. Additionally, our approach streamlines the process of verifying the positive definiteness of the results. These advancements pave the way for deeper insights into quantum correlations, highlighting potential avenues for refined research and innovations in quantum information theory.

Funder

National Natural Science Foundation of China

General Research Fund

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference20 articles.

1. Quantum entanglement;Horodecki;Rev. Mod. Phys.,2009

2. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states;Bennett;Phys. Rev. Lett.,1992

3. Nielsen, M.A., and Chuang, I.L. (2010). Quantum Computation and Quantum Information, Cambridge University Press.

4. Quantum marginal problem and N-representability;Klyachko;J. Phys. Conf. Ser.,2006

5. Symmetric extension of two-qubit states;Chen;Phys. Rev. A,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3