Simulation of Spatial and Temporal Distribution of Forest Carbon Stocks in Long Time Series—Based on Remote Sensing and Deep Learning

Author:

Zhang Xiaoyong12ORCID,Jia Weiwei12ORCID,Sun Yuman12,Wang Fan12ORCID,Miu Yujie12

Affiliation:

1. School of Forestry, Northeast Forestry University, Harbin 150040, China

2. Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China

Abstract

Due to the complexity and difficulty of forest resource ground surveys, remote-sensing-based methods to assess forest resources and effectively plan management measures are particularly important, as they provide effective means to explore changes in forest resources over long time periods. The objective of this study was to monitor the spatiotemporal trends of the wood carbon stocks of the standing forests in the southeastern Xiaoxinganling Mountains by using Landsat remote sensing data collected between 1989 and 2021. Various remote sensing indicators for predicting carbon stocks were constructed based on the Google Earth Engine (GEE) platform. We initially used a multiple linear regression model, a deep neural network model and a convolutional neural network model for exploring the spatiotemporal trends in carbon stocks. Finally, we chose the convolutional neural network model because it provided more robust predictions on the carbon stock on a pixel-by-pixel basis and hence mapping the spatial distribution of this variable. Savitzky–Golay filter smoothing was applied to the predicted annual average carbon stock to observe the overall trend, and a spatial autocorrelation analysis was conducted. Sen’s slope and the Mann–Kendall statistical test were used to monitor the spatial trends of the carbon stocks. It was found that 59.5% of the area showed an increasing trend, while 40.5% of the area showed a decreasing trend over the past 33 years, and the future trend of carbon stock development was plotted by combining the results with the Hurst exponent.

Funder

The Special Fund Project for Basic Research in Central Universities

China National Key Research and Development Program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3