Author:
Bang Junghwan,Yu Dong-Yurl,Yang Ming,Ko Yong-Ho,Yoon Jeong-Won,Nishikawa Hiroshi,Lee Chang-Woo
Abstract
The exemption of Pb-bearing automobile electronics in the End of Life Vehicle (ELV) directive has recently expired, bring an urgent need to find Pb-free alloys that can maintain good performance under high-temperature and vibration conditions for automobile application. In this study, a new lead-free solder, Sn-0.7Cu-0.2Cr (wt.%) alloy, was developed. To evaluate the thermomechanical reliability of the new solder alloy in automobile electronics, a thermal shock test was performed. The results show that the presence of Cr in solder inhibits the growth of interfacial Cu3Sn layer and the formation of Kirkendall voids, which effectively improves the joint reliability under intense thermal shock condition compared with the commercial SAC305 and SC07 solders. Specifically, the shear strength of the Sn-0.7Cu-0.2Cr/Cu solder joints was higher by 23% and 44% than that of SAC305 and SC07 solder joints after 2000 cycles of thermal shock at 1 m/s shear speed.
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献