Magnetic Residual Stress Monitoring Technique for Ferromagnetic Steels

Author:

Vourna Polyxeni,Ktena Aphrodite,Tsarabaris Panagiotis,Hristoforou Evangelos

Abstract

The determination and control of residual stresses resulting from the intentional or unintentional thermal and mechanical loading of steels during their production or manufacturing process, as well as during their lifetime, is a challenge for both the scientific community and the relevant industries. Our team has developed a method and instruments for residual stress determination in ferromagnetic steels, based on the effect of localized strains on the magnetic differential permeability. The proposed method consists of determining the characteristic magnetic stress calibration curves in the laboratory, for the steel grade under examination, and correlating magnetic permeability with residual stresses either on the surface or in the bulk of the material. Magnetic permeability is determined by our new permeability sensors or by other classic permeability meters. Stress components are determined indirectly by strain monitoring using diffraction techniques, like X-ray or neutron diffraction for surface and bulk strain respectively. This way, the best uncertainty of the stress determination achieved has been in the order of 1%. In this paper, after introducing some of the most important details of our method, we illustrate the improvement of the sensitivity of the stress determination by implementing stress-strain dependence on bulk magnetic permeability, and then correlating these results with the neutron diffraction measurements, resulting in residual stress determination uncertainties better than 0.1%. The validity of these results is evaluated by microstructural Scanning Electron Microscopy studies and the superiority of the new method in terms of efficiency, cost, and applicability in industrial applications are discussed.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3