A Decision Support System Based on BI-RADS and Radiomic Classifiers to Reduce False Positive Breast Calcifications at Digital Breast Tomosynthesis: A Preliminary Study

Author:

Alì MarcoORCID,D’Amico Natascha Claudia,Interlenghi MatteoORCID,Maniglio Marina,Fazzini Deborah,Schiaffino SimoneORCID,Salvatore ChristianORCID,Castiglioni Isabella,Papa Sergio

Abstract

Digital breast tomosynthesis (DBT) studies were introduced as a successful help for the detection of calcification, which can be a primary sign of cancer. Expert radiologists are able to detect suspicious calcifications in DBT, but a high number of calcifications with non-malignant diagnosis at biopsy have been reported (false positives, FP). In this study, a radiomic approach was developed and applied on DBT images with the aim to reduce the number of benign calcifications addressed to biopsy and to give the radiologists a helpful decision support system during their diagnostic activity. This allows personalizing patient management on the basis of personalized risk. For this purpose, 49 patients showing microcalcifications on DBT images were retrospectively included, classified by BI-RADS (Breast Imaging-Reporting and Data System) and analyzed. After segmentation of microcalcifications from DBT images, radiomic features were extracted. Features were then selected with respect to their stability within different segmentations and their repeatability in test–retest studies. Stable radiomic features were used to train, validate and test (nested 10-fold cross-validation) a preliminary machine learning radiomic classifier that, combined with BI-RADS classification, allowed a reduction in FP of a factor of 2 and an improvement in positive predictive value of 50%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3