Mechanical Properties of White Metal on SCM440 Alloy Steel by Laser Cladding Treatment

Author:

Jeong Jae-IlORCID,Kim Jong-Hyoung,Choi Si-Geun,Cho Young TaeORCID,Kim Chan-Kyu,Lee Ho

Abstract

The bearing is a machine element that plays an important role in rotating the shaft of a machine while supporting its weight and load. Numerous bearings have been developed to improve durability and life, depending on the functions and operating conditions in which they are desired. White metal is one of method to improve durability that is soft and bonded to the inner surface of the bearing to protect the bearing shaft. Currently, the centrifugal casting process is used as a white metal lamination method, but it involves problems such as long processing times, high defect rates and harmful health effects. In this paper, a laser cladding treatment is applied to bond powdered white metal to SCM440 alloy steel, which is used as bearing material in terms of replacing the risks of a centrifugal process. In order to understand whether laser cladding is a suitable process, this paper compares the mechanical properties of white metal produced on SCM440 alloy steel by centrifugal casting and the laser cladding process. The laser power, powder feed rate and laser head speed factors are varied to understand the mechanical properties and measure the hardness using micro Vickers and conduct field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and friction testing to understand the mechanical properties and surface characteristics. Based on the results, the hardness values of the cladding (white metal) layer ranged between 24 and 26 HV in both the centrifugal casting and laser cladding methods. However, the hardness of the white metal produced by laser cladding at about a depth of 0.1 mm rose rapidly in the cladding process, forming a heat-affected zone (HAZ) with an average hardness value of 200 HV at a laser power of 1.1 kW, 325 HV at 1.3 kW and 430 HV at 1.5 kW. The surface friction testing results revealed no significant differences in the friction coefficient between the centrifugal casting and laser cladding methods, which allows the assumption that the processing method does not significantly influence the friction coefficient.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3