Abstract
Remanufacturing is a key pillar of a circular economy and helps in recovering used products by extending their life cycle via remanufacturing them into new products. A vital aspect in a remanufacturing system is the quality assessment of incoming worn-out products (cores) prior to remanufacturing to ensure that non-conforming cores are discarded at an early stage in order to avoid unnecessary processing. Therefore, quality sorting plays an important role in core acquisition for remanufacturing systems when attempting to mitigate uncertain incoming core quality as an immediate solution. The main problem is that it is difficult to acquire the important information required to decide on the sorting of incoming cores, such as the core quality. The data are also commonly limited, not always available, or inaccurate. Grey systems are powerful methods in decision making when handling uncertainty with small data. In this paper, we consider the usefulness of grey systems for handling uncertain quality information for sorting incoming cores in a remanufacturing system. For this reason, we propose a multi-criteria quality sorting model based on an analytical hierarchy process (AHP)-entropy model that is coupled with grey clustering using possibility functions. The quality criteria for sorting the incoming cores are considered according to the technological, physical, and usage conditions. To demonstrate the practical contribution of this research, a case study of the quality sorting problem with a heavy-duty equipment remanufacturer is presented. The proposed model consistently classifies the quality of used hydraulic cylinders into two grey classes.
Funder
Directorate Research and Community Services (DRPM) Institut Teknologi Sepuluh Nopember (ITS) Surabaya,
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献