A Novel Multi-Criteria Sorting Model Based on AHP-Entropy Grey Clustering for Dealing with Uncertain Incoming Core Quality in Remanufacturing Systems

Author:

Mustajib Mohamad ImronORCID,Ciptomulyono Udisubakti,Kurniati Nani

Abstract

Remanufacturing is a key pillar of a circular economy and helps in recovering used products by extending their life cycle via remanufacturing them into new products. A vital aspect in a remanufacturing system is the quality assessment of incoming worn-out products (cores) prior to remanufacturing to ensure that non-conforming cores are discarded at an early stage in order to avoid unnecessary processing. Therefore, quality sorting plays an important role in core acquisition for remanufacturing systems when attempting to mitigate uncertain incoming core quality as an immediate solution. The main problem is that it is difficult to acquire the important information required to decide on the sorting of incoming cores, such as the core quality. The data are also commonly limited, not always available, or inaccurate. Grey systems are powerful methods in decision making when handling uncertainty with small data. In this paper, we consider the usefulness of grey systems for handling uncertain quality information for sorting incoming cores in a remanufacturing system. For this reason, we propose a multi-criteria quality sorting model based on an analytical hierarchy process (AHP)-entropy model that is coupled with grey clustering using possibility functions. The quality criteria for sorting the incoming cores are considered according to the technological, physical, and usage conditions. To demonstrate the practical contribution of this research, a case study of the quality sorting problem with a heavy-duty equipment remanufacturer is presented. The proposed model consistently classifies the quality of used hydraulic cylinders into two grey classes.

Funder

Directorate Research and Community Services (DRPM) Institut Teknologi Sepuluh Nopember (ITS) Surabaya,

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3