Advanced First-Principle Modeling of Relativistic Ruddlesden—Popper Strontium Iridates

Author:

Liu PeitaoORCID,Franchini Cesare

Abstract

In this review, we provide a survey of the application of advanced first-principle methods on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties of the spin-orbit coupled Ruddlesden–Popper series of iridates Srn+1IrnO3n+1 (n = 1, 2, and ∞). After a brief description of the basic aspects of the adopted methods (noncollinear local spin density approximation plus an on-site Coulomb interaction (LSDA+U), constrained random phase approximation (cRPA), GW, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition can be constructed by inspecting the evolution of electronic and magnetic properties as a function of Hubbard U, spin–orbit coupling (SOC) strength, and dimensionality n, which provide clear evidence for the crucial role played by SOC and U in establishing a relativistic (Dirac) Mott–Hubbard insulating state in Sr2IrO4 and Sr3Ir2O7. To characterize the ground-state phases, we quantify the most relevant energy scales fully ab initio—crystal field energy, Hubbard U, and SOC constant of three compounds—and discuss the quasiparticle band structures in detail by comparing GW and LSDA+U data. We examine the different magnetic ground states of structurally similar n = 1 and n = 2 compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr2IrO4 arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions whereas the collinear AFM state of Sr3Ir2O7 is due to strong interlayer magnetic coupling. Finally, we report the dimensionality controlled metal–insulator transition across the series by computing their optical transitions and conductivity spectra at the GW+BSE level from the the quasi two-dimensional insulating n = 1 and 2 phases to the three-dimensional metallic n=∞ phase.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3