Abstract
Autonomous land yachts can play a major role in the context of environmental monitoring, namely, in open, flat, windy regions, such as iced planes or sandy shorelines. This work addresses the design, modeling, and simulation of a land yacht probe equipped with a rigid free-rotating wing sail and tail flap. The wing was designed with a symmetrical airfoil and dimensions to provide the necessary thrust to displace the vehicle. Specifically, it proposes a novel design and simulation method for free rotating wing sail autonomous land yachts. The simulation relies on the Gazebo simulator together with the Robotic Operating System (ROS) middleware. It uses a modified Gazebo aerodynamics plugin to generate the lift and drag forces and the yawing moment, two newly created plugins, one to act as a wind sensor and the other to set the wing flap angular position, and the 3D model of the land yacht created with Fusion 360. The wing sail aligns automatically to the wind direction and can be set to any given angle of attack, stabilizing after a few seconds. Finally, the obtained polar diagram characterizes the expected sailing performance of the land yacht. The described method can be adopted to evaluate different wing sail configurations, as well as control techniques, for autonomous land yachts.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference33 articles.
1. Autonomy on Land and Sea and in the Air and Space
2. Autonomous Mobile Robots in Unknown Outdoor Environments;Zhu,2020
3. Outsourcing War to Machines—The Military Robotics Revolution;Springer,2018
4. Physics of Sailing;Kimball,2009
5. Continuous Improvements to USNA SailBots for Inshore Racing and Offshore Voyaging
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献