Adsorption of Cd2+ Ions from Aqueous Solution Using Biomasses of Theobroma cacao, Zea mays, Manihot esculenta, Dioscorea rotundata and Elaeis guineensis

Author:

Villabona-Ortíz Ángel,Tejada-Tovar Candelaria,Gonzalez-Delgado Ángel DaríoORCID

Abstract

In this work, the mechanisms of cadmium (Cd2+) adsorption on residual biomasses from husks of yam (Dioscorea rotundata), cassava (Manihor esculenta), cocoa (Theobroma cacao), corn (Zea mays) and oil palm bagasse (Elaeis guineensis) were studied in order to evaluate the effect of temperature, adsorbent dose and particle size in a batch system. Isotherms and adsorption kinetics were determined and adjusted to different models. The biomaterials were characterized using the techniques of Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Results reveal that the possible mechanisms of Cd2+ adsorption in bioadsorbents were ion exchange and complexation with -COOH and -OH groups. From the experimentation, it was found that best conditions were presented at 55 °C, particle size 0.5 mm and 0.03 g adsorbent. The following biomass performance was obtained in terms of adsorption capacities: cocoa husk (CH) > corn cob residues (CCR) > cassava peel (CP) > palm bagasse (OPB) > yam peel (YP), according to the Langmuir and Dubinin- Radushkevich (D-R) models. The equilibrium of Cd2+ adsorption over YP and OPB was well described by Langmuir’s isothermal model, while for CH, CCR and CP the model that best fit experimental data was Freundlich’s model. The results of D-R model suggested that the process is controlled by physisorption mechanism with strong interactions among active sites and Cd2+ ions. The kinetics for all systems studied fit the pseudo-second order model. The values of the thermodynamic parameters established that cadmium removal is of endothermic nature and not spontaneous using YP and CP, and exothermic, spontaneous and irreversible when using OPB, CH and CCR. The results suggest the use of YP, OPB, CH, CP and CCR residues for the removal of aqueous Cd2+.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3