A UWB-Driven Self-Actuated Projector Platform for Interactive Augmented Reality Applications

Author:

Elsharkawy AhmedORCID,Naheem KhawarORCID,Koo Dongwoo,Kim Mun Sang

Abstract

With the rapid development of interactive technology, creating systems that allow users to define their interactive envelope freely and provide multi-interactive modalities is important to build up an intuitive interactive space. We present an indoor interactive system where a human can customize and interact through a projected screen utilizing the surrounding surfaces. An ultra-wideband (UWB) wireless sensor network was used to assist human-centered interaction design and navigate the self-actuated projector platform. We developed a UWB-based calibration algorithm to facilitate the interaction with the customized projected screens, where a hand-held input device was designed to perform mid-air interactive functions. Sixteen participants were recruited to evaluate the system performance. A prototype level implementation was tested inside a simulated museum environment, where a self-actuated projector provides interactive explanatory content for the on-display artifacts under the user’s command. Our results depict the applicability to designate the interactive screen efficiently indoors and interact with the augmented content with reasonable accuracy and relatively low workload. Our findings also provide valuable user experience information regarding the design of mobile and projection-based augmented reality systems, with the ability to overcome the limitations of other conventional techniques.

Funder

This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Spatial Augmented Reality: Merging Real and Virtual Worlds;Bimber,2005

2. Interactive Classroom Projectorshttps://www.benq.com/en-ap/business/projector/interactive-classroom-projectors.html

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3