The Potential of a Surface-Modified Titanium Implant with Tetrapeptide for Osseointegration Enhancement

Author:

Syam SyamsiahORCID,Wu Chia-Jen,Lan Wen-Chien,Ou Keng-LiangORCID,Huang Bai-Hung,Lin Yu-Yeong,Saito TakashiORCID,Tsai Hsin-Yu,Chuo Yen-Chun,Yen Ming-Liang,Liu Chung-Ming,Hou Ping-Jen

Abstract

In this study, the innovative dip-coating technique treated titanium (IDCT-Ti) implant with tetrapeptide Gly-Arg-Gly-Asp (GRGD) coating was investigated for its potential to enhance osseointegration. The L929 fibroblast cells were cultured in different concentrations of the GRGD (1%, 2%, and 5%). The cell viability was assessed through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and live/dead staining. The surface topography and nano-indentation were analyzed by atomic force microscopy. The hemocompatibility was evaluated via field-emission scanning electron microscopy, while contact angle analysis was detected by a goniometer. Radiograph evaluation was determined by panoramic imaging. It was found that the cell growth increased and had a survival rate of more than 70% in 1% GRGD. The mortality of L929 increased with the higher concentration of GRGD. The IDCT-Ti coated with 1% GRGD showed a nano-surface with a Young’s modulus that was similar to human cortical bone, and it displayed greater red blood cell accumulations with abundant fibrin formation. As regards the wettability, the IDCT-Ti coated with 1% GRGD was lower than the SLA (sandblasted, large-grit, and acid-etched) treated implant. The X-ray image exhibited no bone loss around the implant at six months after placement. As a result, this study suggests that the IDCT-Ti implant, coated with 1% GRGD, has a tremendous likeliness to enhance osseointegration.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3