Electrospun PVP/PVA Nanofiber Mat as a Novel Potential Transdermal Drug-Delivery System for Buprenorphine: A Solution Needed for Pain Management

Author:

Rahmani Fatemeh,Ziyadi Hakimeh,Baghali Mitra,Luo HongrongORCID,Ramakrishna SeeramORCID

Abstract

Over the past several decades, the formulation of novel nanofiber-based drug-delivery systems has been a frequent focus of scientists around the world. Aiming to introduce a novel nanofibrous transdermal drug-delivery system to treat pain, the nanofiber mats of buprenorphine-loaded poly (vinyl pyrrolidone) (Bup/PVP) and buprenorphine-loaded poly(vinyl alcohol)/poly(vinyl pyrrolidone) (Bup/PVP/PVA) were successfully fabricated by the electrospinning process for transdermal drug delivery. Similarly, PVP and PVP/PVA nanofibers were fabricated in the same conditions for comparison. The viscosity and electrical conductivity of all electrospinning solutions were measured, and nanofiber mats were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy and contact angle analysis. The conductivity of PVP and PVP/PVA solutions showed a considerable increase by the addition of buprenorphine due to the polarity of buprenorphine. SEM images showed a smooth, fine and porous nanofibrous structure without any adhesion or knot for all of the samples. The contact angle analysis showed the increased hydrophilicity and wettability of PVP/PVA and Bup/PVP/PVA nanofibers compared to PVP and Bup/PVP nanofibers which can be attributed to the addition of PVA. Attenuated total reflectance (ATR) FT-IR results confirmed that the electrospinning process did not affect the chemical integrity of the drug. For the modification of the drug release rate, the cross-linking of nanofiber mats was carried out using glutaraldehyde. Drug release measurements using high-performance liquid chromatography (HPLC) analysis demonstrated that Bup/PVP/PVA nanofibers exhibited better physical and chemical properties compared to Bup/PVP. Furthermore, the cross-linking of nanofibers led to an increase in drug release time. Thus, the novel buprenorphine-loaded nanofibers can be efficient biomaterial patches for transdermal delivery against pain improving carrier retention and providing a controlled release of the drug.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3