Multimodal Unsupervised Speech Translation for Recognizing and Evaluating Second Language Speech

Author:

Lee Yun KyungORCID,Park Jeon GueORCID

Abstract

This paper addresses an automatic proficiency evaluation and speech recognition for second language (L2) speech. The proposed method recognizes the speech uttered by the L2 speaker, measures a variety of fluency scores, and evaluates the proficiency of the speaker’s spoken English. Stress and rhythm scores are one of the important factors used to evaluate fluency in spoken English and are computed by comparing the stress patterns and the rhythm distributions to those of native speakers. In order to compute the stress and rhythm scores even when the phonemic sequence of the L2 speaker’s English sentence is different from the native speaker’s one, we align the phonemic sequences based on a dynamic time-warping approach. We also improve the performance of the speech recognition system for non-native speakers and compute fluency features more accurately by augmenting the non-native training dataset and training an acoustic model with the augmented dataset. In this work, we augment the non-native speech by converting some speech signal characteristics (style) while preserving its linguistic information. The proposed variational autoencoder (VAE)-based speech conversion network trains the conversion model by decomposing the spectral features of the speech into a speaker-invariant content factor and a speaker-specific style factor to estimate diverse and robust speech styles. Experimental results show that the proposed method effectively measures the fluency scores and generates diverse output signals. Also, in the proficiency evaluation and speech recognition tests, the proposed method improves the proficiency score performance and speech recognition accuracy for all proficiency areas compared to a method employing conventional acoustic models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3