Non-Destructive Testing of Moisture and Nitrogen Content in Pinus Massoniana Seedling Leaves with NIRS Based on MS-SC-CNN

Author:

Huang Zhuo,Zhu TingtingORCID,Li Zhenye,Ni Chao

Abstract

Pinus massoniana is a pioneer reforestation tree species in China. It is crucial to evaluate the seedling vigor of Pinus massoniana for reforestation work, and leaf moisture and nitrogen content are key factors used to achieve it. In this paper, we proposed a non-destructive testing method based on the multi-scale short cut convolutional neural network (MS-SC-CNN) to measure moisture and nitrogen content in leaves of Pinus massoniana seedlings. By designing a reasonable short cut structure, the method realized the transmission of loss function gradient across the multi-layer structure in the network and reduced the information loss caused by the multi-layer transmission in the forward propagation. Meanwhile, in the back propagation stage, the loss caused by the multi-layer transmission of gradient was reduced. Thus, the gradient vanishing problem in training was avoided. Since the method realized cross-layer transmission error, the convolutional layer could be increased appropriately to obtain higher measurement accuracy. To verify the performance of the proposed MS-SC-CNN non-destructive measurement method, the near-infrared hyperspectral data of sample leaves of 219 Pinus massoniana seedlings were collected from the Huangping Forest Farm in Guizhou Province. The correlation coefficient between the measured and real values of the prediction was as high as 0.977 and the root mean square error was 0.242 for the moisture content of Pinus massoniana seedling leaves. For the nitrogen content of Pinus massoniana seedling leaves, the correlation coefficient between the measured and real values of the prediction was 0.906 and the root-mean-square error was 0.061. The results showed that the non-destructive testing method based on MS-SC-CNN that we proposed can accurately measure the moisture and nitrogen content in leaves of Pinus massoniana seedlings.

Funder

the 2019 Jiangsu Province Key Research and Development Plan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Positive interactions between Pinus massoniana and Castanopsis hystrix species in the uneven-aged mixed plantations can produce more ecosystem carbon in subtropical China

2. Runoff and soil loss from Pinus massoniana forest in southern China after simulated rainfall

3. Measurement of wheat plants water content based on near-infrared photoelectric sensors;Zhang;Trans. Chin. Soc. Agric. Mach.,2017

4. Fast and non-destructive detection of soybean moisture content based on near infrared spectroscopy;Zhang;Spectrosc. Spectr. Anal.,2018

5. Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3