Plastic Joints in Bridge Columns of Atypical Cross-Sections with Smooth Reinforcement without Seismic Details

Author:

Srbić Mladen,Mandić Ivanković Ana,Vlašić Anđelko,Hrelja Kovačević Gordana

Abstract

In seismically active areas, knowledge of the actual behavior of bridges under seismic load is extremely important, as they are crucial elements of the transport infrastructure. To assess their seismic resistance, it is necessary to know the key indicators of their seismic response. Bridges built before the adoption of standards for seismic detailing may still contain structural reserves due to the properties of the used materials and construction approach. For example, smooth reinforcement which is found in older bridges due to the material properties, detailing principles, and lower bond strength compared to ribbed reinforcement, allows for greater deformations. In bridges, columns are vital elements employed in the dissipation of seismic energy. Their cross-sections often deviate from the regular square, rectangular, or round cross-sections, which are typically found in building. Based on the behavior of the columns in the vicinity of potential plastic joints, we can determine their deformability. This paper presents an experimental study of seismic resistance indicators around a potential plastic joint for a column with an atypical cross-section, without seismic details and with smooth reinforcement. The experimental results are compared with the numerical and analytical, but also with the experimental results on samples with ribbed reinforcement. Conclusions are made about the behavior of such column elements and their seismic resistance indicators, allowing for the application of an analytical or numerical method with realistic material and element properties and derivation of correction factors due to the effect of the smooth-reinforcement slippage from the anchorage area.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3