Using Attenuated Total Reflection (ATR) Apparatus to Investigate the Temperature Dependent Dielectric Properties of Water, Ice, and Tissue-Representative Fats

Author:

Vilagosh Zoltan,Lajevardipour AlirezaORCID,Appadoo Dominique,Juodkazis SauliusORCID,Wood Andrew W.ORCID

Abstract

A novel method of investigating the temperature dependent variation of aspects of the complex refractive index n* in samples in the THz range using continuous, non-polarised, synchrotron radiation is presented. The method relies on the use of ATR apparatus, and retains the advantage of minimal sample preparation, which is a feature of ATR techniques. The method demonstrates a “proof of concept” of monitoring temperature reflectance whilst continuously heating or cooling samples by using a temperature variable Thermal Sample Stage. The method remains useful when the refractive index of the sample precludes attenuated total reflection study. This is demonstrated with the water reflectance experiments. The temperature dependent ATR reflectance of tissue-representative fats (lard and Lurpak® butter) was investigated with the novel approach. Both are within the ATR range of the diamond crystal in a “true” ATR mode. Lard showed no clear temperature variation between −15 °C and 24 °C at 0.7 to 1.15 THz or 1.70 to 2.25 THz. Lard can be regarded as having invariable, constant, dielectric properties within mixtures when biological substances are being assessed for temperature dependent dielectric variation within the stated THz ranges. Lurpak® butter (water content 14.7%) displayed temperature dependent reflected signal intensity features with a steady decline in reflectivity with increasing temperature. This is in line with the temperature-dependent behaviour of liquid water. There is no rapid change in reflected signal intensity even at −20 °C, suggesting that emulsified water retains liquid-water-like THz properties at freezing temperatures.

Funder

Australian Synchrotron

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3