Abstract
A novel method of investigating the temperature dependent variation of aspects of the complex refractive index n* in samples in the THz range using continuous, non-polarised, synchrotron radiation is presented. The method relies on the use of ATR apparatus, and retains the advantage of minimal sample preparation, which is a feature of ATR techniques. The method demonstrates a “proof of concept” of monitoring temperature reflectance whilst continuously heating or cooling samples by using a temperature variable Thermal Sample Stage. The method remains useful when the refractive index of the sample precludes attenuated total reflection study. This is demonstrated with the water reflectance experiments. The temperature dependent ATR reflectance of tissue-representative fats (lard and Lurpak® butter) was investigated with the novel approach. Both are within the ATR range of the diamond crystal in a “true” ATR mode. Lard showed no clear temperature variation between −15 °C and 24 °C at 0.7 to 1.15 THz or 1.70 to 2.25 THz. Lard can be regarded as having invariable, constant, dielectric properties within mixtures when biological substances are being assessed for temperature dependent dielectric variation within the stated THz ranges. Lurpak® butter (water content 14.7%) displayed temperature dependent reflected signal intensity features with a steady decline in reflectivity with increasing temperature. This is in line with the temperature-dependent behaviour of liquid water. There is no rapid change in reflected signal intensity even at −20 °C, suggesting that emulsified water retains liquid-water-like THz properties at freezing temperatures.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献