Author:
Yang Cheng,Chen Jingjie,Li Zhiyuan,Huang Yi
Abstract
The detection and recognition of surface cracks are of great significance for structural safety. This paper is based on a deep-learning methodology to detect and recognize structural cracks. First, a training dataset of the model is built. Then, three neural networks, AlexNet, VGGNet13, and ResNet18, are employed to recognize and classify crack images. The tests indicate that the ResNet18 model generates the most satisfactory results. It is also found that the trained YOLOv3 model detects the crack area with satisfactory accuracy. This study also confirms that the proposed deep learning as a novel technology has the potential to be an efficient and robust tool for crack detection and recognition to replace traditional methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献