Quality Assessment of 3D Synthesized Images Based on Textural and Structural Distortion Estimation

Author:

Alvi Hafiz Muhammad Usama Hassan,Farid Muhammad ShahidORCID,Khan Muhammad HassanORCID,Grzegorzek MarcinORCID

Abstract

Emerging 3D-related technologies such as augmented reality, virtual reality, mixed reality, and stereoscopy have gained remarkable growth due to their numerous applications in the entertainment, gaming, and electromedical industries. In particular, the 3D television (3DTV) and free-viewpoint television (FTV) enhance viewers’ television experience by providing immersion. They need an infinite number of views to provide a full parallax to the viewer, which is not practical due to various financial and technological constraints. Therefore, novel 3D views are generated from a set of available views and their depth maps using depth-image-based rendering (DIBR) techniques. The quality of a DIBR-synthesized image may be compromised for several reasons, e.g., inaccurate depth estimation. Since depth is important in this application, inaccuracies in depth maps lead to different textural and structural distortions that degrade the quality of the generated image and result in a poor quality of experience (QoE). Therefore, quality assessment DIBR-generated images are essential to guarantee an appreciative QoE. This paper aims at estimating the quality of DIBR-synthesized images and proposes a novel 3D objective image quality metric. The proposed algorithm aims to measure both textural and structural distortions in the DIBR image by exploiting the contrast sensitivity and the Hausdorff distance, respectively. The two measures are combined to estimate an overall quality score. The experimental evaluations performed on the benchmark MCL-3D dataset show that the proposed metric is reliable and accurate, and performs better than existing 2D and 3D quality assessment metrics.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3