Influence of Altitude and Image Overlap on Minimum Mapping Size of Chemical in Non-Destructive Trace Detection Using Hyperspectral Remote Sensing

Author:

Chaudhary SiddharthORCID,Ninsawat SarawutORCID,Nakamura TaiORCID

Abstract

The increasing threat of explosives is a serious issue affecting socio-economy of many countries at multiple levels, such as public security, unused arable land, closing of trade routes, isolation of villages, and these act as a hindrance in the development of the country. Activities using explosives have increased in the last two decades making it a global threat that is challenging humanity. In this study, different chemicals such as Ammonium Nitrate (AN), Trinitrotoluene (TNT) and C4 along with soil as the background material were used for trace detection. The aim of this study was to determine an altitude for the sensor and to identify the minimum mapping size of the chemical at which the model can achieve 70% accuracy. To determine the altitude and minimum size of the chemical that can be detected in the acceptable range of accuracy, several experiments were performed in real ground conditions. This study focuses on the applicability of the proposed method in the real world. In the first set of experiments, the altitude of the sensor was varied from 40 cm to 150 cm and the accuracy of the model was determined. From the analysis, it was found that the model achieved more than 75% accuracy at an altitude of 90 cm with an image overlap of 70%. In the second set of experiments, the minimum size of chemical sample was varied from 0.25 cm to 1 cm. The accuracy of the model was more than 70% when the minimum sample size was 0.5 cm or greater. For various altitude determined, the speed of the vehicle was calculated. Therefore, to implement hyperspectral imaging system on the unarmed vehicle for real application, the suggested altitude and speed of the sensor should be around 90 cm and 10.5 cm/s at which detection limit would be equal or more than 0.5 cm with accuracy greater than 70%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3