Application of Visual Radiographic Analysis of Quality Grade of Table Eggs

Author:

Hsiao Wen-Tien,Lin Hsin-Hon,Lai Lu-HanORCID

Abstract

Digital radiography is currently the main method of medical imaging diagnosis. It also has a wide range of applications across different fields. This study used radiation to conduct non-destructive visual imaging, and further established a quantitative analysis for visual gray-scale images to determine changes in the quality of eggs. Eggs of the same weight with three quality classes were chosen according to the egg labels available on the market. Furthermore, a general medical X-ray digital imaging system was used to apply two-dimensional digital radiography. A photometric interpretation of monochrome gray-scale imaging established by the Digital Imaging and Communications in Medicine (DICOM) standard was used to conduct a quantitative stratification analysis of the matrix data visualization, along with one-way analysis of variance (ANOVA) for quantitative statistics of the gray-scale values for the three structures, i.e., shell, air cell, and yolk. The statistical results showed that X-ray digital gray-scale images and a quantitative stratification analysis of the matrix data visualization results are less easily identified based on visual differences. In the quantitative statistical results of the one-way ANOVA gray-scale values, the whole-egg and in-egg quantitative matrix analysis both show p < 0.05. In the analysis of egg freshness, the quantitative statistics of the percentage of space occupied by the air cell in the eggs also showed p < 0.05. In addition, the results of the freshness of each egg were graded. The quality and freshness of the eggs can be quantitatively analyzed through radiographic imaging. The results of this study will provide a more scientific and quantitative reference for the quality and freshness of agricultural products in the future.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3