Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers

Author:

Prado Laura Álvarez deORCID,Menéndez JavierORCID,Bernardo-Sánchez AntonioORCID,Galdo MónicaORCID,Loredo Jorge,Fernández-Oro Jesús ManuelORCID

Abstract

Million cubic meters from abandoned mines worldwide could be used as subsurface reservoirs for large scale energy storage systems, such as adiabatic compressed air energy storage (A-CAES). In this paper, analytical and three-dimensional CFD numerical models have been conducted to analyze the thermodynamic performance of the A-CAES reservoirs in abandoned mines during air charging and discharging processes. Unlike other research works, in which the heat transfer coefficient is considered constant during the operation time, in the present investigation a correlation based on both unsteady Reynolds and Rayleigh numbers is employed for the heat transfer coefficient in this type of application. A tunnel with a 35 cm thick concrete lining, 200 m3 of useful volume and typical operating pressures from 5 to 8 MPa were considered. Fiber-reinforced plastic (FRP) and steel were employed as sealing layers in the simulations around the fluid. Finally, the model also considers a 2.5 m thick sandstone rock mass around the concrete lining. The results obtained show significant heat flux between the pressurized air and the sealing layer and between the sealing layer and concrete lining. However, no temperature fluctuation was observed in the rock mass. The air temperature fluctuations are reduced when steel sealing layer is employed. The thermal energy balance through the sealing layer for 30 cycles, considering air mass flow rates of 0.22 kg s−1 (charge) and −0.45 kg s−1 (discharge), reached 1056 and 907 kWh for FRP and steel, respectively. In general, good agreements between analytical and numerical simulations were obtained.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3